Abstract
An efficient pack-level battery thermal management system is essential to ensure the safe driving experience of electric vehicles. In this work, we perform three-dimensional modeling of a liquid thermal management system for a real-world battery pack powering electrical vehicles. The effects of system structures, coolant flow direction layout, coolant flow rates, and inlet temperatures on the thermal performance are investigated. Under 2.0 C discharge, the system structure with interspersed cooling plates reduces the maximum temperature of the battery pack to 36.3 °C, which is 15% lower than that of the conventional design with bottom-mounted cooling plates. With the present system structure, around 62.2% of the heat produced by the batteries is dissipated. Moreover, the temperature difference is decreased by 10.5% with appropriately arranging coolant flow directions in different liquid cooling plates. In addition, increasing the coolant flow rate and lowering the inlet coolant temperature can greatly reduce the maximum battery temperature, while the latter parameter shows little influence on the pack temperature difference, which only changes 0.3 °C when the inlet temperature is decreased by 6 °C. This work provides valuable guidance for the development of pack-level liquid battery thermal management systems in electric vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.