Abstract

This paper is concerned with the study of the characteristics of plain woven fabric produced with micro-porous cotton yarns in weft. The micro-porous yarns with varying packing densities and level of pore volumes are produced by changing proportion of PVA fibre content in the blend, yarn twist multiplier (TM) and spindle speed at ring frame. The micro-pores within the structure of the yarn have been created by dissolving the PVA fibres using washing treatment in hot water. A three-variable factorial design technique proposed by Box and Behnken has been used to study the interaction effects of these variables on the characteristics of fabrics. The influence of these three variables on the mechanical, handle and comfort properties of fabrics are studied, the response-surface equations for all the properties have been derived and the design variables are optimized for various fabric properties. Improvements in bending resistance, abrasion resistance and compressional characteristics have been observed with incorporation of micro-pores within the yarn structure. These fabrics with micro-pores have improved thermal resistance and moisture vapour transmission compared to that of 100% cotton fabric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call