Abstract
Let G=(V,E) be an oriented graph whose edges are labelled by the elements of a group Γ and let A ⊂ V. An A-path is a path whose ends are both in A. The weight of a path P in G is the sum of the group values on forward oriented arcs minus the sum of the backward oriented arcs in P. (If Γ is not abelian, we sum the labels in their order along the path.) We are interested in the maximum number of vertex-disjoint A-paths each of non-zero weight. When A = V this problem is equivalent to the maximum matching problem. The general case also includes Mader's S-paths problem. We prove that for any positive integer k, either there are k vertex-disjoint A-paths each of non-zero weight, or there is a set of at most 2k −2 vertices that meets each of the non-zero A-paths. This result is obtained as a consequence of an exact min-max theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.