Abstract
We consider a natural generalization of the classical multiple knapsack problem in which instead of packing single items we are packing groups of items. In this problem, we have multiple knapsacks and a set of items which are partitioned into groups. Each item has an individual weight, while the profit is associated with groups rather than items. The profit of a group can be attained if and only if every item of this group is packed. Such a general model finds applications in various practical problems, e.g., delivering bundles of goods. The tractability of this problem relies heavily on how large a group could be. Deciding if a group of items of total weight 2 could be packed into two knapsacks of unit capacity is already NP-hard and it thus rules out a constant-approximation algorithm for this problem in general. We then focus on the parameterized version where the total weight of items in each group is bounded by a factor delta of the total capacity of all knapsacks. Both approximation and inapproximability results with respect to delta are derived. We also show that, depending on whether the number of knapsacks is a constant or part of the input, the approximation ratio for the problem, as a function on delta, changes substantially, which has a clear difference from the classical multiple knapsack problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.