Abstract

A set of tri-axial ellipsoids, with given semi-axes, is to be packed into a rectangular box; its widths, lengths and height are subject to lower and upper bounds. We want to minimize the volume of this box and seek an overlap-free placement of the ellipsoids which can take any orientation. We present closed non-convex NLP formulations for this ellipsoid packing problem based on purely algebraic approaches to represent rotated and shifted ellipsoids. We consider the elements of the rotation matrix as variables. Separating hyperplanes are constructed to ensure that the ellipsoids do not overlap with each other. For up to 100 ellipsoids we compute feasible points with the global solvers available in GAMS. Only for special cases of two ellipsoids we are able to reach gaps smaller than $$10^{-4}$$10-4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.