Abstract

This work aims to investigate the eect of fines in dierent type of bi-disperse grain size distributions in terms of minimum/maximum density, compressibility and crushing. The material adopted is the Light Expanded Clay Aggregate (LECA), an artificial granular material characterized by light, porous and crushable grains. The bi-disperse grading are firstly analysed in terms of packing density, measuring experimentally the minimum and the maximum porosity for dierent combination of sizes and volume proportions. Then, some selected mixtures are subjected to one-dimensional compression tests up to high pressures. Evolution of grain size due to grain crushing phenomena and compressibility are therefore measured and interpreted. Finally a theoretical model is adopted in order to predict the mechanical material response accounting grain crushing and granular microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.