Abstract
Exploiting the relationship between 4-dimensional toric and semitoric integrable systems with Delzant and semitoric polygons, respectively, we develop techniques to compute certain equivariant packing densities and equivariant capacities of these systems by working exclusively with the polygons. This expands on results of Pelayo and Pelayo-Schmidt. We compute the densities of several important examples and we also use our techniques to solve the equivariant semitoric perfect packing problem, i.e., we list all semitoric polygons for which the associated semitoric system admits an equivariant packing which fills all but a set of measure zero of the manifold. This paper also serves as a concise and accessible introduction to Delzant and semitoric polygons in dimension four.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.