Abstract

In scale-free networks, the degree distribution follows a power law with the exponent γ. Many model networks exist which reproduce the scale-free nature of the real-world networks. In most of these models, the value of γ is continuously tunable, thus is not universal. We study a problem of data packet transport in scale-free networks and define load at each vertex as the accumulated total number of data packets passing through that vertex when every pair of vertices send and receive a data packet along the shortest paths. We find that the load distribution follows a power law with an exponent δ for scale-free networks. Moreover, the load exponent δ is insensitive to the details of the networks in the range 2< γ⩽3. For the class of networks considered in this work, δ≈2.2(1). We conjecture that the load exponent is a universal quantity to characterize and classify scale-free networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.