Abstract

We consider the problem of permutation routing on a star graph, an interconnection network which has better properties than the hypercube. In particular, its degree and diameter are sublogarithmic in the network size. We present optimal randomized routing algorithms that run in O(D) steps (where D is the network diameter) for the worst-case input with high probability. We also show that for the n-way shuffle network with N = nn nodes, there exists a randomized routing algorithm which runs in O(n) time with high probability. Another contribution of this paper is a universal randomized routing algorithm that could do optimal routing for a large class of networks (called leveled networks) which includes the star graph. The associative analysis is also network-independent. In addition, we present a deterministic routing algorithm, for the star graph, which is near optimal. All the algorithms we give are oblivious. As an application of our routing algorithms, we also show how to emulate a PRAM optimally on this class of networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.