Abstract

ABSTRACTFor methanol oxidative dehydrogenation to formaldehyde, the performance of the packed-bed membrane reactor (PBMR) is compared with that of the conventional fixed-bed reactor (FBR) over a wide range of operating conditions. The reaction was studied in three reactor configurations: the conventional FBR and the packed-bed membrane reactor, with either methanol (PBMR-M) or oxygen (PBMR-O) as the permeating component. The kinetics of methanol and formaldehyde partial oxidation reactions were determined and incorporated in a PBMR model. Both experimental data and model considerations demonstrate that the PBMR enhances reactant conversion and selectivity.Small oscillations in CO production were observed experimentally. Their amplitude was taken as a basis for comparison of packed-bed operation instability. The likely source of oscillatory behavior is the non-uniformity in reaction conditions along the reactor. It was found that membrane distributed feed, by providing a more uniform reactor operation, is an effective remedy from these instabilities.It is found, both by simulations and experimental observations, that relative reactor performance depends strongly on the operating conditions. Using formaldehyde yield as the basis for optimization, optimal reactor performances are determined to be in the order: PBMR-O > FBR > PBMR-M. Further PBMR productivity enhancement is possible by optimizing the membrane feed distribution pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call