Abstract

Experimental exploration of highly spin-polarized states of liquid 3He by applying external magnetic field is limited by the availability of static magnetic field. In the “ferromagnetic” superfluid A1 phase of liquid 3He there is an alternate method for boosting spin-polarization by the process of spin pumping without requiring such high magnetic field. The spin pumping in the A1 phase takes advantage of a superleak (SL) acting simultaneously as a filter for both entropy and spin. The spin pump technique that uses the SL-spin filter and a mechanical actuator enables us to directly boost polarization of 3He. The amount of enhancement of spin polarization has been limited so far. We are now developing a new type of SL filter made of packed aluminum oxide powder (referred as PAP-SL), in order to achieve greater enhancement of spin polarization. Several kinds of the PAP-SL filter were constructed by pressing aluminum oxide powders into a cylinder holder. The packed structures were carefully characterized by a flow-rate-measurement, X-ray tomography, and mercury intrusion porosimetry. The preliminary result shows that the PAP-SL works as SL filter for the superfluid 3He.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call