Abstract

In this study, the performance of N-methyl-d-glucamine (NMDG) type functional group attached a novel boron selective chelating fiber adsorbent, Chelest Fiber GRY-HW, was investigated for boron removal from geothermal brine containing 10–11 mg B/L through a packed bed column. The effect of feed flow rate (Space Velocity, SV) on breakthrough capacity of Chelest Fiber GRY-HW was studied using various SV values (15, 20 and 30 h−1). The effect of SV on breakthrough capacity was particularly apparent when SV was decreased from 30 to 15 h−1. Yoon–Nelson, Thomas and Modified Dose Response (MDR) models were applied to the experimental data to estimate the breakthrough curves and model parameters such as rate constants and breakthrough times. The obtained results showed that the breakthrough curves were better described by Modified Dose Response (MDR) model than those described by Yoon-Nelson and Thomas models in each case. Also, the model estimations for adsorption capacity obtained by MDR model agreed well with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.