Abstract

Packed anode of microbial fuel cells (MFCs), commonly with a dense structure, suffers from the clogging, resulting in unsatisfied long-term stability of MFCs. Herein, we fabricate a biochar-based packed anode with a loose structure to enhance the long-term performance of MFCs equipped with packed anodes. The biochar, derived from cocklebur fruit, endows the packed anode with a loose structure but excellent conductivity. Once incorporated into MFCs, the biochar-based packed anode can yield comparable performance to benchmark materials. Particularly, the biochar-based MFCs present no obvious decrease of the power output during 150 days’ operation, which is attributed to the clogging-resistant effect induced by the loose structure of biochar-based anode. The cocklebur fruit-derived biochar can be a promising candidate for MFC anodes, and should facilitate both scaling-up and practical applications of MFCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.