Abstract

Background:Self-amplifying mRNA is the next-generation vaccine platform with the potential advantages in efficacy and speed of development against infectious diseases and cancer. The main aim was to present optimized and rapid methods for SFV-PD SAM preparation, its packaging, and titer determination. These protocols are provided for producing and harvesting the high yields of VRP-packaged SAM for vaccine studies.Methods:pSFV-PD-EGFP plasmid was linearized and subjected to in vitro transcription. Different concentrations of SFV-PD SAM were first transfected into HEK-293 and BHK-21 cell lines, and EGFP expression at different time points was evaluated by fluorescent microscopy. Replicon particle packaging was achieved by co-transfection of SFV-PD SAM and pSFV-Helper2 RNA into BHK-21 cells. The VRPs were concentrated using ultrafiltration with 100 kDa cut-off. The titers of replicon particles were determined by RT-qPCR. Results: In vitro transcribed SAM encoding EGFP was successfully transfected and expressed in HEK-293 and BHK-21 cell lines. Higher levels of EGFP expression was observed in BHK-21 compared to HEK-293 cells showing more stable protein overexpression and VRP packaging. Using ultrafiltration, the high yields of purified SFV-PD-EGFP particles were rapidly obtained with only minor loss of replicon particles. Accurate and rapid titer determination of replication-deficient particles was achieved by RT-qPCR. Conclusion:Using optimized methods for SAM transfection, VRP packaging, and concentration, high yields of SFV-PD VRPs could be produced and purified. The RT-qPCR demonstrated to be an accurate and rapid method for titer determination of replication deficient VRPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call