Abstract

The IBM System z10™ Enterprise Class mainframe addresses the modern data center requirements for minimizing floor space while increasing computing power efficiency. These objectives placed challenges on the z10™ packaging design as a result of significantly increased demand on system packaging density, power delivery, and logic and power cooling efficiency compared with the recent IBM System z9® and z990 mainframe generations. Several innovations were implemented to successfully meet these challenges: a more powerful multichip module (MCM) that delivers denser computing capability and a 64-way system; a vertically mated processor unit (PU) book structure that achieves a more efficient thermal implementation and a higher signal bandwidth between processors; and a PU book-centric dc-dc power delivery design that is more efficient. This paper presents the key elements to achieve this design: the novel mechanical load transmission paths and the connector technologies for the MCM, PU book, I/O, and power regulation components; an innovative cooling and thermal design that includes component-level tolerance of failures; and improved power delivery and power code developments to maximize the overall z10 compute efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.