Abstract

Recent developments in the electronics industry have introduced a multi-stack ball grid array (BGA) to meet the growing consumer demand for both high-performance and smaller-sized chip packages. This study focused on the preliminary study of the Package-on-Package (PoP) underfill process using a material dam method. High viscosity type of underfill material is considered for the underfill process. In the current experimental work, L path-dispensing method was chosen due to its advantages, as reported in the previous work. The material dam method was used to prevent underfill from moving backwards and flowing out from the dispensing region. The material dam was built surrounding the PoP package. The effectiveness of the underfill process was analyzed based on the cycle time and lateral lapping, which are significant factors in material selection. The experimental results revealed that slow underfill flow may cause the quickly harden of material while the dispensing process is still running. This situation restricts the underfill flow and creates voids in the PoP package. The material dam method successfully enhanced the underfilling process for layers 3 and 4 stacked-package. This study is expected to provide the preliminary underfill process of stacking the PoP package and is useful as a reference for the engineer in the microelectronics industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call