Abstract

A recent study of shocks near defibrillation threshold (DFT) strength demonstrated that at least three rapid cycles always occur after failed shocks but not after successful shocks, suggesting that the number and rapidity of postshock cycles are important in determining defibrillation success. To test this hypothesis, rapid pacing was performed following a shock stronger than the DFT that by itself did not induce rapid cycles and ventricular fibrillation (VF). Epicardial activation was mapped in six pigs using a 504-electrode sock. The DFT was determined by an up/down protocol with S1 shocks (right ventricle-superior vena cava, biphasic). Ten shocks that were 100 to 200 V above the DFT (aDFT) were delivered after 10 seconds of VF to confirm they always defibrillated. Then, S2, S3, etc., pacing at 5 to 10 times diastolic threshold was performed from the left ventricular apex after aDFT shocks during VF. First, the postshock interval after aDFT shocks was scanned with an S2 stimulus to find the shortest S1-S2 coupling interval (CI) that captured. This was repeated for S3, S4, etc., until VF was induced. To induce VF after aDFT shocks, three pacing stimuli (S2, S3, S4) with progressively shorter CIs were always required; S2 or S2,S3 never induced VF. For the S2-S4 cycles, the intercycle interval was shorter (P < 0.01), and the wavefront conduction time was longer (P < 0.01) for episodes in which VF was induced (n = 57) than for episodes in which it was not (n = 60). Following the S4 cycle that induced VF, two types of spontaneous activation patterns appeared: focal (88%) and reentrant (12%). VF induction after aDFT shocks always required at least three rapid successive paced-induced cycles. Thus, the number and rapidity of the first several postshock cycles rather than just the first postshock cycle may be determining factors for defibrillation outcome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.