Abstract
Evidence from power spectra of deep-sea oxygen isotope time series suggests that the climate system of Earth responds nonlinearly to astronomical forcing by frequency modulating eccentricity-related variations in insolation. With the help of a simple model, it is shown that frequency modulation of the approximate 100,000-year eccentricity cycles by the 413,000-year component accounts for the variable duration of the ice ages, the multiple-peak character of the time series spectra, and the notorious absence of significant spectral amplitude at the 413,000-year period. The observed spectra are consistent with the classic Milankovitch theories of insolation, so that climate forcing by 100,000-year variations in orbital inclination that cause periodic dust accretion appear unnecessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.