Abstract
Pacemaker cells, known as interstitial cells of Cajal (ICC), generate electrical rhythmicity in the gastrointestinal tract. Pacemaker currents in ICC result from the activation of a voltage-independent, non-selective cation conductance, but the timing mechanism responsible for periodic activation of the pacemaker current is unknown. Previous studies suggest that pacemaking in ICC is dependent upon metabolic activity 1y1yand1 Ca2+ release from intracellular stores. We tested the hypothesis that mitochondrial Ca2+ handling may underlie the dependence of gastrointestinal pacemaking on oxidative metabolism. Pacemaker currents occurred spontaneously in cultured ICC and were associated with mitochondrial Ca2+ transients. Inhibition of the electrochemical gradient across the inner mitochondrial membrane blocked Ca2+ uptake and pacemaker currents in cultured ICC and blocked slow wave activity in intact gastrointestinal muscles from mouse, dog and guinea-pig. Pacemaker currents and rhythmic mitochondrial Ca2+ uptake in ICC were also blocked by inhibitors of IP3-dependent release of Ca2+ from the endoplasmic reticulum and by inhibitors of endoplasmic reticulum Ca2+ reuptake. Our data suggest that integrated Ca2+ handling by endoplasmic reticulum and mitochondria is a prerequisite of electrical pacemaking in the gastrointestinal tract.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.