Abstract

Pacemaker cells, known as interstitial cells of Cajal (ICC), generate electrical rhythmicity in the gastrointestinal tract. Pacemaker currents in ICC result from the activation of a voltage-independent, non-selective cation conductance, but the timing mechanism responsible for periodic activation of the pacemaker current is unknown. Previous studies suggest that pacemaking in ICC is dependent upon metabolic activity 1y1yand1 Ca2+ release from intracellular stores. We tested the hypothesis that mitochondrial Ca2+ handling may underlie the dependence of gastrointestinal pacemaking on oxidative metabolism. Pacemaker currents occurred spontaneously in cultured ICC and were associated with mitochondrial Ca2+ transients. Inhibition of the electrochemical gradient across the inner mitochondrial membrane blocked Ca2+ uptake and pacemaker currents in cultured ICC and blocked slow wave activity in intact gastrointestinal muscles from mouse, dog and guinea-pig. Pacemaker currents and rhythmic mitochondrial Ca2+ uptake in ICC were also blocked by inhibitors of IP3-dependent release of Ca2+ from the endoplasmic reticulum and by inhibitors of endoplasmic reticulum Ca2+ reuptake. Our data suggest that integrated Ca2+ handling by endoplasmic reticulum and mitochondria is a prerequisite of electrical pacemaking in the gastrointestinal tract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call