Abstract

Ca(2+) activity in the CNS is critical for the establishment of developing neuronal circuitry prior to and during early sensory input. In developing olfactory bulb (OB), the neuromodulators that enhance network activity are largely unknown. Here we provide evidence that pituitary adenylate cyclase-activating peptide (PACAP)-specific PAC1 receptors (PAC1Rs) expressed in postnatal day (P)2-P5 mouse OB are functional and enhance network activity as measured by increases in calcium in genetically identified granule cells (GCs). We used confocal Ca(2+) imaging of OB slices from Dlx2-tdTomato mice to visualize GABAergic GCs. To address whether the PACAP-induced Ca(2+) oscillations were direct or indirect effects of PAC1R activation, we used antagonists for the GABA receptors (GABARs) and/or glutamate receptors (GluRs) in the presence and absence of PACAP. Combined block of GABARs and GluRs yielded a 66% decrease in the numbers of PACAP-responsive cells, suggesting that 34% of OB neurons are directly activated by PACAP. Similarly, immunocytochemistry using anti-PAC1 antibody showed that 34% of OB neurons express PAC1R. Blocking either GluRs or GABARs alone indirectly showed that PACAP stimulates release of both glutamate and GABA, which activate GCs. The appearance of PACAP-induced Ca(2+) activity in immature GCs suggests a role for PACAP in GC maturation. To conclude, we find that PACAP has both direct and indirect effects on neonatal OB GABAergic cells and may enhance network activity by promoting glutamate and GABA release. Furthermore, the numbers of PACAP-responsive GCs significantly increased between P2 and P5, suggesting that PACAP-induced Ca(2+) activity contributes to neonatal OB development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.