Abstract

The pathogenesis of sepsis is mediated in part by bacterial endotoxin (lipopolysaccharide; LPS), which stimulates macrophages/monocytes to sequentially release early (e.g., TNF-α, IL-1β) and late [e.g., high mobility group box 1 (HMGB1) protein] pro-inflammatory cytokines. Specifically targeting early mediators has not been effective clinically, in part, because peak mediator activity often has passed before therapy can be initiated. Recent discovery of HMGB1 as a late mediator of lethal sepsis has provided a new target for the treatment of septic shock. Here, we demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide, significantly attenuated circulating HMGB1 levels and increased survival in animals with established endotoxemia, even if treatment began after acute cytokine response has occurred. In vitro, PACAP suppressed LPS-induced HMGB1 release from macrophages/monocytes, even when given 2–4 h after LPS stimulation. PACAP also suppressed HMGB1 release induced by TNF-α or IFN-γ. Moreover, PACAP inhibits HMGB1-induced cytokine release in vitro and in vivo. These results indicate that PACAP inhibits the release and pro-inflammatory activity of HMGB1 and improves survival during lethal endotoxemia, which confirms this peptide as a candidate for therapy of septic shock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.