Abstract

Using Blume's stochastic model and the approach of Winkler and Gerdau, we have computed time-dependent effects on perturbed angular correlation (PAC) spectra due to defect motion in solids in the case ofI=5/2 electric quadrupole interactions. We report detailed analysis for a family of simple models: “XYZ+Z” models, in which the symmetry axis of an axial EFG is allowed to fluctuate among orientations alongx, y, andz axes, and a static axial EFG oriented along thez axis is added to the fluctuating EFGs. When the static EFG is zero, this model is termed the “XYZ” model. Approximate forms are given forG2(t) in the slow and rapid fluctuation regimes, i.e. suitable for the low and high temperature regions, respectively. Where they adequately reflect the underlying physical processes, these expressions allow one to fit PAC data for a wide range of temperatures and dopant concentrations to a single model, thus increasing the uniqueness of the interpretation of the defect properties. Application of the models is illustrated with data from a PAC study of tetragonal zirconia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.