Abstract

Activation of phosphatidylinositol 3-kinase (PI3K) by lipid oxidation products, including lysophosphatidylcholine (lysoPC), increases the externalization of canonical transient receptor potential 6 (TRPC6) channels leading to a subsequent increase in intracellular calcium that contributes to cytoskeletal changes which inhibit endothelial cell (EC) migration in vitro and impair EC healing of arterial injuries in vivo. The PI3K p110α and p110δ catalytic subunit isoforms regulate lysoPC-induced TRPC6 externalization in vitro, but have many other functions. The goal of the current study is to identify the PI3K regulatory subunit isoform involved in TRPC6 externalization to potentially identify a more specific treatment regimen to improve EC migration and arterial healing, while minimizing off-target effects. Decreasing the p85α regulatory subunit isoform protein levels, but not the p85β and p55γ regulatory subunit isoforms, with small interfering RNA inhibits lysoPC-induced translocation of the PI3K catalytic subunit to the plasma membrane, dramatically decreased phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production and TRPC6 externalization, and significantly improves EC migration in the presence of lysoPC. These results identify the important and specific role of p85α in controlling translocation of PI3K from the cytosol to the plasma membrane and PI3K-mediated TRPC externalization by oxidized lipids. Current PI3K inhibitors block the catalytic subunit, but our data suggest that the regulatory subunit is a novel therapeutic target to promote EC migration and healing after arterial injuries that occur with angioplasty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call