Abstract

The zinc-finger antiviral protein (ZAP) specifically inhibits the replication of many viruses by preventing the accumulation of viral mRNAs in the cytoplasm. ZAP directly binds to the viral mRNAs and recruits the RNA exosome to degrade the target RNA. In the present study, we identified the p72 DEAD box RNA helicase, but not the highly similar RNA helicase p68, as a ZAP-interacting protein. The binding domain of ZAP was mapped to its N-terminal portion, whereas both the N- and C-terminal domains of p72 bound to ZAP. Overexpression of the C-terminal domain of p72 reduced ZAP's activity, whereas overexpression of the full-length p72 enhanced ZAP's activity. The RNA helicase activity was required for p72 to promote ZAP-mediated RNA degradation. Depletion of p72 by RNAi also reduced ZAP's activity but did not affect tristetraprolin-mediated RNA degradation. We conclude that p72 is required for the optimal activity of ZAP, and we propose that p72 helps to restructure the ZAP-bound target mRNA for efficient degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.