Abstract
The low survival rate of patients with colorectal cancer (CRC) is mainly due to the drug resistance of tumor cells to chemotherapeutic agents. It has been reported that basic fibroblast growth factor (bFGF) is an essential factor involved in the epigenetic mechanisms of drug resistance, which provides a novel potential target for improving the sensitivity of tumor cells to chemotherapeutic agents. In this study, we first demonstrate that a novel bFGF antagonist, peptide P7, previously isolated by phage display technology, reversed bFGF-induced resistance to irinotecan hydrochloride (CPT-11), and counteracted the anti-apoptotic effects of bFGF on CPT-11-treated HT-29 cells. Further experiments indicated that the inhibition of Akt activation, the suppression of bFGF internalization, the increase in the Bax to Bcl-2 ratio and the downregulation of cytokeratin 8 (CK8) by P7 may contribute to the counteracting of the anti-apoptotic effects of bFGF, and further reversal of bFGF-induced resistance to CPT-11. Our results suggest that peptide P7 may have therapeutic potential in CRC as a sensitizer to chemotherapeutic agents by targeting bFGF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.