Abstract

The rise of fluorescence as an indicator for P680(+)* reduction by YZ and the period-four oscillation of oxygen yield induced by a train of saturating flashes were measured in dark-adapted thylakoids as a function of pH in the absence of exogenous electron acceptors. The results reveal that: (i) the average amplitude of the nanosecond kinetics and the average of the maximum fluorescence attained at 100 micros after the flash in the acidic range decrease with decreasing pH; (ii) the oxygen yield exhibits a pronounced period-four oscillation at pH 6.5 and higher damping at both pH 5.0 and pH 8.0; (iii) the probability of misses in the Si-state transitions of the water oxidizing complex is affected characteristically when exchangeable protons are replaced by deuterons [at pH <6.5, the ratio alpha(D)/alpha(H) is larger than 1 whereas at pH >7.0 values of <1 are observed]. The results are discussed within the framework of a combined mechanism for P680(+)* reduction where the nanosecond kinetics reflect an electron transfer coupled with a "rocket-type" proton shift within a hydrogen bridge from YZ to a nearby basic group, X [Eckert, H.-J., and Renger, G. (1988) FEBS Lett. 236, 425-431], and subsequent relaxations within a network of hydrogen bonds. It is concluded that in the acidic region the hydrogen bond between YZ and X (most likely His 190 of polypeptide D1) is interrupted either by direct protonation of X or by conformational changes due to acid-induced Ca2+ release. This gives rise to a decreased P680(+)* reduction by nanosecond kinetics and an increase of dissipative P680(+)* recombination at low pH. A different mechanism is responsible for the almost invariant amplitude of nanosecond kinetics and increase of alpha in the alkaline region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.