Abstract

Abstract Background NAD is a major coenzyme in energy metabolism and a substrate for SIRT1 and PARP1 enzymes involved in the response to energy and oxidative stress. We have shown the beneficial effects of nicotinamide riboside (NR), a new type of vitamin B3, on cardiac function and remodelling in a mouse model of dilated cardiomyopathy (DCM) triggered by deletion of the SRF transcription factor in the heart (Srf-HKO) (1). This functional improvement correlated with protection of NAD metabolism and a robust increase in cardiac expression of the Nicotinamide Riboside Kinase 2 (NMRK2) that phosphorylates NR to generate nicotinamide mononucleotide (NMN), an immediate precursor of NAD. Purpose We aim to understand the role of the NMRK2-mediated NAD biosynthetic pathway in the heart at baseline and in the DCM context. Methods We generated Nmrk2-KO mice that we bred with Srf-HKO to generate double KO mice (db-KO). We analysed cardiac function and remodelling by echocardiography and quantified myocardial NAD levels at baseline and following NR supplementation in food. Results Nmrk2KO mice developed a progressive eccentric remodelling of LV and decline in EF with aging. At 24-mo, we observed a reduction of myocardial NAD levels (−40% compared to wild type, p<0.05) and of LVEF (61%, SD 6.3% in Nmrk2-KO vs 78%, SD 1.5% in WT, p<0.05). To assess the contribution of cardiac Nmrk2 induction to NR response in DCM, we compared SrfH-KO and db-KO mice fed with control diet (CD) or NR supplemented diet for 40 days starting at young age (2-mo). NR reduced the extent of LV eccentric remodelling and drop in EF as well as the thinning of the LV posterior wall in both genotypes (2-way ANOVA, diet effect, p<0.01). Myocardial NAD levels were more reduced in db-KO mice under CD diet (−22% compared to control mice, p<0.05) than in Srf-HKO mice (−11%, non-significant), when we previously showed a 25% drop in myocardial NAD in aged SrfHKO mice (1). NR partially preserved cardiac NAD pool in db-KOmice (−10% compared to controls, non-significant). Parallel pathways for NMN synthesis were studied. Nampt gene expression was significantly repressed in db-KO mice fed with CD or NR diet compared to control mice (−50% in average, p<0.01), when there was only a trend toward lower expression in SrfHKO mice (−40% in average, p>0.05). Nmrk1 gene expression trended to increase in all groups compared to wild-type control mice. Conclusion We show that NMRK2 pathway plays a role in the maintenance of basal cardiac function and NAD levels when relying on the endogenous myocardial NR pool. In contrast, the beneficial effect of a therapeutic dose of NR is not affected by the lack of NMRK2 suggesting compensation by NMRK1 in the heart and/or that NR beneficial effects on cardiac function could be mediated through its action on systemic metabolism. Aging appears as an aggravating factor for the loss of myocardial NAD coenzyme in DCM. Acknowledgement/Funding Agence Nationale pour la Recherche, Fondation de France

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call