Abstract

Chemotherapeutic drug-induced p53-dependent crosstalk among tumor cells affects the sensitivity of tumor cells to chemotherapeutic drugs, contributing to chemoresistance. Therefore, pharmacological targeting of p53 may contribute to overcoming drug resistance. The localization of p53 is closely related to its function. Thus, we assessed the effect of p62 on the coordination of p53 mitochondrial localization under chemotherapeutic drug treatment in ovarian cancer cells. We found that the combined use of the proteasome inhibitor epoxomicin and cisplatin led to the accumulation of p53 and sequestosome1(p62) in the mitochondria, downregulated mitochondrial DNA (mtDNA) transcription, inhibited mitochondrial functions, and ultimately promoted apoptosis by enhancing cisplatin sensitivity in ovarian cancer cells. Moreover, the ubiquitin-associated (UBA) domain of p62 was involved in regulating the mitochondrial localization of p53. Our findings suggest that the interaction between p62 and p53 may be a mechanism that determines the fate of tumor cells. In conclusion, p62 coordinated the mitochondrial localization of p53 through its UBA domain, inhibited mtDNA transcription, downregulated mitochondrial function, and promoted ovarian cancer cell death. Our study demonstrates the important role of p53 localization in tumor cell survival and apoptosis, and provides new insights into understanding the anti-tumor mechanism of targeting the ubiquitin–proteasome system in tumor cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call