Abstract

Abstract Background Although fractional flow reserve (FFR) is a gold standard method to evaluate functional lesion severity in the catheterization laboratory, the need of hyperemic condition limits the widespread adoption of FFR. Recently, the resting full-cycle ratio (RFR) which was newly developed resting indices was launched. It is unclear whether RFR as resting condition could assess physiological lesion severity of coronary artery stenosis. The aim of this study was to evaluate the diagnostic impact of RFR compared to FFR in entire range of coronary artery stenosis. Method A total of 53 patients with 70 lesions were enrolled in this study. The RFR was measured after adequately waiting for stable condition, while FFR was measured after intravenous administration of ATP (180mcg/kg/min). Lesions with FFR ≤0.80 were considered functionally significant coronary artery stenosis. Results In all lesions, reference diameter, diameter stenosis, lesion length, RFR, and FFR were 3.3±0.8mm, 44±12%, 14.6±7.2mm, 0.90±0.11, and 0.83±0.11, respectively. Functional significance was observed in 24 lesions (34%) of all lesions. The RFR showed a significant correlation with FFR (y = 0.800x + 0.239, R = 0.817, p<0.001). The Bland-Altman plot demonstrated a good agreement with a mean difference of 0.07 and a standard deviation of 0.06 between RFR and FFR across entire range of coronary artery stenosis. ROC curve analysis showed an excellent accuracy of RFR cut-off of ≤0.90 in predicting FFR ≤0.80 which had 78% sensitivity and 87% specificity (AUC 0.87, diagnostic accuracy 84%). Conclusion The RFR as newly resting indices is reliable to the assessment of functional lesion severity. This physiology-based approach may be a possible alternative method for FFR measurements in daily practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call