Abstract

Abstract Background Poor cell homing limits efficacy of cardiac cellular therapy. The cysteine–arginine–glutamic acid–lysine–alanine (CREKA) homing peptide binds with high specificity to fibrin which is involved in repair of tissue injury. Purpose We assessed if CREKA-modified stem cells had enhanced fibrin-mediated homing ability resulting in better functional recovery and structural preservation in a rat myocardial injury model. Methods CREKA-modified mesenchymal stem cells (CREKA-MSCs) were obtained via membrane fusion with CREKA-modified liposomes. The fibrin targeting ability of CREKA-MSCs was examined both in vitro and in vivo. Results Under both static and flow conditions in vitro, CREKA significantly enhanced MSCs binding ability to fibrin clots. CREKA-MSCs showed much more higher accumulation than unmodified MSCs in injured rat myocardium, colocalizing with fibrin and resulting in better cardiac function. Stem cell-CREKA-fibrin targeting system Conclusions Modification of MSCs with the homing peptide CREKA favored their migration and retention in the infarcted area, resulting in better structural preservation and functional recovery. Fibrin is therefore a novel target for enhancing homing of transplanted cells to injured myocardium and the fibrin-targeting delivery system represents a generalizable platform technology for regenerative medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call