Abstract

Full-length human p53 protein was examined using tryptophan fluorescence and circular dichroism spectroscopy (CD) to monitor unfolding. No significant alteration in tryptophan fluorescence for the tetrameric protein was detectable over a wide range of either urea or guanidine hydrochloride concentrations, in contrast to results with the isolated DNA binding domain [Bullock et al. (1997) Proc. Natl. Acad. Sci. USA 94, 14338]. Under similar denaturant conditions, CD demonstrated significant protein unfolding for the full-length wild-type protein, with increased apparent structure loss compared to that detected during thermal denaturation [Nichols and Matthews (2001) Biochemistry 40, 3847]. Examination of X-ray structures containing two of the four tryptophan residues of a p53 monomer suggested local environments consistent with quenched fluorophores. Exploration of p53 fluorescence using potassium iodide as a quencher confirmed that these fluorophores are already substantially quenched in the native structure, and this quenching is not relieved during protein unfolding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.