Abstract

Philadelphia chromosome positive chronic myeloid leukemia has a progressive course starting in a benign phase and terminating in a blastic phase. In this study, we show that human homolog double minute 2 (HDM2) inhibition, with MI-219-a novel compound, and consequently p53 stabilization induce chronic myeloid leukemia (CML) blast crisis cells to undergo apoptosis regardless of the presence of the T315I mutation in the BCR-ABL kinase domain. The response to MI-219 is associated with the downregulation of c-Myc and the induction of p21(WAF1). The p53 target and pro-apoptotic proteins PUMA, Noxa and Bax are induced, whereas full length Bid protein decreases with increased activity of pro-apoptotic cleaved Bid, and decrease of Mcl-1 is observed by increased caspase activity. CD95/FAS (FAS antigen) receptor is also induced by MI-219, indicating that both intrinsic and extrinsic apoptotic responses are transcriptionally induced. In addition, p53 protein accumulates in the mitochondrial fraction of treated cells involved in transcription-independent induction of apoptosis. We conclude that HDM-2 inhibition with MI-219 effectively induces p53-dependent apoptosis in most blast crisis CML cells, with or without BCR-ABL mutation(s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.