Abstract

Neural progenitor cells (NPCs) have the capacity to proliferate and give rise to all major central nervous system cell types and represent a possible cell of origin in gliomagenesis. Deletion of the tumor suppressor gene Tp53 (p53) results in increased proliferation and self-renewal of NPCs and is a common genetic mutation found in glioma. We have identified inhibitor of DNA binding 2 (Id2) as a novel target gene directly repressed by p53 to maintain normal NPC proliferation. p53((-/-)) NPCs express elevated levels of Id2 and suppression of Id2 expression is sufficient to inhibit the increased proliferation and self-renewal which results from p53 loss. Elevated expression of Id2 in wild-type NPCs phenocopies the behavior of p53((-/-)) NPCs by enhancing NPC proliferation and self-renewal. Interestingly, p53 directly binds to a conserved site within the Id2 promoter to mediate these effects. Finally, we have identified elevated Id2 expression in glioma cell lines with mutated p53 and demonstrated that constitutive expression of Id2 plays a key role in the proliferation of glioma stem-like cells. These findings indicate that Id2 functions as a proproliferative gene that antagonizes p53-mediated cell cycle regulation in NPCs and may contribute to the malignant proliferation of glioma-derived tumor stem cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call