Abstract
This study was performed to explore the strategy of combining Chk1 inhibitors with ionizing radiation (IR) to selectively target p53-deficient cancer cells. Survival and cell cycle progression were measured in response to IR and the Chk1 inhibitors, UCN-01 and CEP-3891, in colon carcinoma HCT116 p53+/+ and p53-/- cells, and in osteosarcoma U2OS-VP16 cells with conditional expression of dominant-negative p53 (p53DD). Clonogenic survival was selectively reduced in HCT116 p53-/- compared to p53+/+ cells after treatment with UCN-01 and IR, and HCT116 p53+/+ cells also displayed strong p53-dependent G(1) arrest in the 1st cell cycle after IR. In contrast, clonogenic survival was affected similarly in U2OS-VP16 cells with and without expression of p53DD. However, death of U2OS-VP16 cells was p53 dependent as assessed by cell viability assay at 72 h, and this was associated with p53-dependent G(1) arrest in the 2nd cell cycle after treatment. Notably, HCT116 cells were overall more resistant than U2OS cells to cytotoxic effects of Chk1 inhibitors. Our results suggest that p53-dependent G(1) arrest in both 1st and 2nd cell cycles may protect human cancer cells from cell death after treatment with IR and Chk1 inhibitors. However, a challenge for future clinical use will be that different cancers display different intrinsic sensitivity to such inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.