Abstract

BackgroundDespite advances in early diagnosis and treatment of cancer patients, metastasis remains the major cause of mortality. TP53 is one of the most frequently mutated genes in human cancer, and these alterations can occur during the early stages of oncogenesis or as later events as tumors progress to more aggressive forms. Previous studies have suggested that p53 plays a role in cellular pathways that govern metastasis. To investigate how p53 deficiency contributes to late-stage tumor growth and metastasis, we developed paired isogenic patient-derived xenograft (PDX) models of triple-negative breast cancer (TNBC) differing only in p53 status for longitudinal analysis.MethodsPatient-derived isogenic human tumor lines differing only in p53 status were implanted into mouse mammary glands. Tumor growth and metastasis were monitored with bioluminescence imaging, and circulating tumor cells (CTCs) were quantified by flow cytometry. RNA-Seq was performed on p53-deficient and p53 wild-type tumors, and functional validation of a lead candidate gene was performed in vivo.ResultsIsogenic p53 wild-type and p53-deficient tumors metastasized out of mammary glands and colonized distant sites with similar frequency. However, p53-deficient tumors metastasized earlier than p53 wild-type tumors and grew faster in both primary and metastatic sites as a result of increased proliferation and decreased apoptosis. In addition, greater numbers of CTCs were detected in the blood of mice engrafted with p53-deficient tumors. However, when normalized to tumor mass, the number of CTCs isolated from mice bearing parental and p53-deficient tumors was not significantly different. Gene expression profiling followed by functional validation identified B cell translocation gene 2 (BTG2), a downstream effector of p53, as a negative regulator of tumor growth both at primary and metastatic sites. BTG2 expression status correlated with survival of TNBC patients.ConclusionsUsing paired isogenic PDX-derived metastatic TNBC cells, loss of p53 promoted tumor growth and consequently increased tumor cell shedding into the blood, thus enhancing metastasis. Loss of BTG2 expression in p53-deficient tumors contributed to this metastatic potential by enhancing tumor growth in primary and metastatic sites. Furthermore, clinical data support conclusions generated from PDX models and indicate that BTG2 expression is a candidate prognostic biomarker for TNBC.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-016-0673-9) contains supplementary material, which is available to authorized users.

Highlights

  • Despite advances in early diagnosis and treatment of cancer patients, metastasis remains the major cause of mortality

  • Using paired isogenic patient-derived xenograft (PDX)-derived metastatic triple-negative breast cancer (TNBC) cells, loss of p53 promoted tumor growth and increased tumor cell shedding into the blood, enhancing metastasis

  • DNA sequencing revealed that this tumor is wild-type (WT) for Gene encoding p53 (TP53) [25], and p53 is known to be functional in these cells [16]

Read more

Summary

Introduction

Despite advances in early diagnosis and treatment of cancer patients, metastasis remains the major cause of mortality. TP53 is one of the most frequently mutated genes in human cancer, and these alterations can occur during the early stages of oncogenesis or as later events as tumors progress to more aggressive forms. To investigate how p53 deficiency contributes to late-stage tumor growth and metastasis, we developed paired isogenic patient-derived xenograft (PDX) models of triple-negative breast cancer (TNBC) differing only in p53 status for longitudinal analysis. Triple-negative (negative for estrogen receptor, progesterone receptor, and human epithelial receptor 2 (HER2) gene amplification) breast cancer (TNBC) is an aggressively metastatic subtype with a disproportionately high rate of TP53 mutation compared to other breast cancer subtypes. A genomic study of treatment-naïve TNBC revealed that p53 loss or acquisition of somatic mutations does not always emerge as a founding event [11], suggesting that disruption of p53 function can influence late stages of tumor development. We studied the contribution made by p53 deficiency to metastasis in late-stage triple-negative breast cancer

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call