Abstract

Sensory symptoms are common in individuals with autism spectrum disorder (ASD). Altered sensory gating may cause sensory overload. However, whether ASD individuals have P50 gating deficits is controversial in childhood and lacks evidence in adulthood. Beyond P50, fewer studies have examined N100 or P200, although N100 is considered to be more reliable than P50. Also, the clinical correlates of these parameters are mostly unknown. This study aimed to investigate P50, N100, and P200 sensory gating in adolescents and young adults with ASD and examine their clinical correlates. In a sample of 34 ASD participants (mean age 20.6 ± 4.1, female 5.9%) and 34 sex- and age-matched typically-developing controls (TDC, mean age 20.4 ± 3.1), we investigated P50, N100, and P200 sensory gating by a paired-click paradigm, which generated the data of S1 amplitude after the first click and S2 amplitude after the second click. We found that compared to TDC, ASD participants had significant N100 suppression deficits reflected by a larger N100 S2 amplitude, smaller N100 ratio of S2 over S1, and the difference between the two amplitudes. N100 S2 amplitude was significantly associated with sensory sensitivity independent of the diagnosis. Although there was no group difference in P50 suppression, S1 amplitude was negatively associated with social deficits in ASD. P200 gating parameters were correlated with attention switching difficulty. Our findings suggest N100 gating deficit in adolescents and young adults with ASD. The relationships between P50 S1 and social deficits and between N100 S2 and sensory sensitivity warrant further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call