Abstract
Soluble oligomeric aggregates of the amyloid-β peptide (Aβ) have been implicated in the pathogenesis of Alzheimer’s disease (AD). Although the conformation adopted by Aβ within these aggregates is not known, a β-hairpin conformation is known to be accessible to monomeric Aβ. Here we show that this β-hairpin is a building block of toxic Aβ oligomers by engineering a doublecysteine mutant (called AβCC) in which the β-hairpin is stabilized by an intramolecular disulfide bond. Aβ40CC and Aβ42CC both spontaneously form stable oligomeric species with distinct molecular weights and secondary-structure content, but both are unable to convert into amyloid fibrils. Biochemical and biophysical experiments and assays with conformation-specific antibodies used to detect Aβ aggregates in vivo indicate that the wild-type oligomer structure is preserved and stabilized in AβCC oligomers. Stable oligomers are expected to become highly toxic and, accordingly, we find that β-sheet-containing Aβ42CC oligomers or protofibrillar species formed by these oligomers are 50 times more potent inducers of neuronal apoptosis than amyloid fibrils or samples of monomeric wild-type Aβ42, in which toxic aggregates are only transiently formed. The possibility of obtaining completely stable and physiologically relevant neurotoxic Aβ oligomer preparations will facilitate studies of their structure and role in the pathogenesis of AD. For example, here we show how kinetic partitioning into different aggregation pathways can explain why Aβ42 is more toxic than the shorter Aβ40, and why certain inherited mutations are linked to protofibril formation and early-onset AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.