Abstract

Insulin-like growth factor I (IGF-I)/insulin induced cytosolic p42/p44 mitogen-activated protein kinase (MAPK) activation in a time-dependent manner in fetal brown adipocytes, reaching a maximum at 5 min. Concurrently, nuclear p42/p44 MAPKs were also activated by IGF-I and insulin. This cytosolic and nuclear MAPK activation was totally prevented by pretreatment with the MAPK kinase (MEK1) inhibitor, PD98059. These results indicate that MEK mediates the IGF-I/insulin-induced p42/ p44 MAPK activation. IGF-I and insulin also increased the number of cells in the S + G2/M phases of the cell cycle, PCNA levels, and DNA synthesis at 24 h. This IGF-I/insulin-induced proliferation was completely blunted by the presence of MEK1 inhibitor. In contrast, inhibition of MEK1 potentiated the IGF-I-induced uncoupling protein (UCP-1) and the insulin-induced fatty acid synthase mRNAs expression after short and long-term treatments. Moreover, transient expression of a transfected active MEK construct (R4F) decreased IGF-I-induced UCP-1 and insulin-induced fatty acid synthase mRNA expression. These results demonstrate that p42/p44 MAPKs are essential intermediates for the IGF-I/insulin-induced mitogenesis, but may have a negative role in the regulation of adipocytic and thermogenic differentiation in brown adipocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.