Abstract

p40 was previously described as a regulatory molecule capable of inhibiting both the natural and the CD16-mediated cytotoxicity of NK cells. In this study, we analyze the effect of p40 molecule engagement on the NK cell triggering induced by activating HLA class I-specific NK receptors (NKR) or on TCR alpha beta-mediated T cell activation. CD3-CD16+ NK cell clones expressing activating NKR (either CD94 or p50) were analyzed in a redirected killing assay using P815 target cells and appropriate mAb. A strong target cell lysis was detected in the presence of anti-NKR or anti-CD16 mAb alone. Addition of anti-p40 mAb resulted in a strong inhibition of both anti-NKR or anti-CD16 mAb-induced cytolysis. mAb specific for either CD45 or lymphocyte function associated antigen-1 did not exert any inhibitory effect in the same experimental system. Free intracellular calcium ([Ca2+]i) increase induced by mAb cross-linking of activating CD94 or p50 was inhibited by simultaneous engagement of p40 molecules, but not of other NK surface molecules including CD44 and CD56. In addition, cross-linking of p40 molecules strongly inhibited the CD94-induced tumor necrosis factor-alpha and IFN-gamma production. Analysis of TCR alpha beta or gamma delta T cell clones revealed that the engagement of p40 molecules, using specific mAb, induced some degree of inhibition only on anti-V beta (but not anti-V delta or anti-CD3) mAb-induced cytotoxicity. On the other hand, the p40 molecule engagement prevented T cell proliferation induced by either anti-V beta 8 or anti-V delta 2 mAb. A similar inhibitory effect was found on the IL-2-induced NK cell proliferation. Taken together, our present findings suggest that p40 may play a role in the regulation of NK and T lymphocyte activation and proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.