Abstract

Haemophilus parasuis induces severe acute systemic infection in pigs, characterized by fibrinous polyserositis, polyarthritis and meningitis. Our previous study demonstrated that H. parasuis induced the activation of p38 mitogen-activated protein kinase (MAPK) pathway, increasing the expression of proinflammatory genes and mediating H. parasuis-induced inflammation. Moreover, Wnt/β-catenin signaling activation induced by H. parasuis disrupts the adherens junction between epithelial cells and initiates the epithelial-mesenchymal transition (EMT). In the present study, p38 MAPK was found to be involved in the accumulation of nuclear location of β-catenin during H. parasuis infection in PK-15 and NPTr cells, via modulating the expression of dickkofp-1 (DKK-1), a negative regulator of Wnt/β-catenin signaling. We generated DKK-1 knockout cell lines by CRISPR/Cas9-mediated genome editing in PK-15 and NPTr cells, and found that knockout of DKK-1 led to the dysfunction of p38 MAPK in regulating Wnt/β-catenin signaling activity in H. parasuis-infected cells. Furthermore, p38 MAPK activity was independent of the activation of Wnt/β-catenin signaling during H. parasuis infection. This is the first study to explore the crosstalk between p38 MAPK and Wnt/β-catenin signaling during H. parasuis infection. It provides a more comprehensive view of intracellular signaling pathways during pathogenic bacteria-induced acute inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call