Abstract

AU-rich-element (ARE)-mediated mRNA regulation occurs in Saccharomyces cerevisiae in response to external and internal stimuli through the p38 mitogen-activated protein kinase (MAPK)/Hog1p pathway. We demonstrate that the ARE-bearing MFA2 3' untranslated region (UTR) controls translation efficiency in a p38 MAPK/Hog1p-dependent manner in response to carbon source growth conditions. The carbon source-regulated effect on MFA2 3'-UTR-controlled translation involves the role of conserved ARE binding proteins, the ELAV/TIA-1-like Pub1p, which can interact with the cap/eIF4G complex, and the translation/mRNA stability factor poly(A) binding protein (Pab1p). Pub1p binds the MFA2 3'-UTR in a p38 MAPK/Hog1p-regulated manner in response to carbon source growth conditions. Significantly, the p38 MAPK/Hog1p is also required to modulate Pab1p in response to carbon source. We find that Pab1p can bind the MFA2 3'-UTR in a regulated manner to control MFA2 3'-UTR reporter translation. Binding of full-length Pab1p to the MFA2 3'-UTR correlates with translation repression. Importantly, Pab1p binds the MFA2 3'-UTR only in a PUB1 strain, and correlating with this requirement, Pub1p controls translation repression of MFA2 in a carbon source/Hog1p-regulated manner. These results suggest that the p38 MAPK/Hog1p pathway regulates 3'-UTR-mediated translation by modulating recruitment of Pab1p and Pub1p, which can interact with the translation machinery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call