Abstract

Age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment worldwide. Age is the greatest risk factor for AMD but the underlying mechanism remains unascertained, resulting in a lack of effective therapies. Growing evidence shows that dysregulation of the p38 MAPK signaling pathway (SP) contributes to aging and neurodegenerative diseases; however, information about its alteration in the retina with age and during AMD development is limited. To assess the contribution of alterations in p38 MAPK signaling to AMD, we compared age-associated changes in p38 MAPK SP activity in the retina between Wistar rats (control) and OXYS rats, which develop AMD-like retinopathy spontaneously. We analyzed changes in the mRNA levels of genes of this SP in the retina (data of RNA-seq) and evaluated the phosphorylation/activation of key kinases using Western blotting at different stages of AMD-like pathology including the preclinical stage. p38 MAPK SP activity increased in the retinas of healthy Wistar rats with age. The manifestation and dramatic progression of AMD-like pathology in OXYS rats was accompanied by hyperphosphorylation of p38 MAPK and MK2 as key p38 MAPK SP kinases. Retinopathy progression co-occurred with the enhancement of p38 MAPK-dependent phosphorylation of CryaB at Ser59 in the retina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.