Abstract

The mitogen-activated protein kinases (MAPKs) signaling pathway is involved in inflammatory process. However, the mechanism is not clear. The present study was to investigate the role of p38 MAPK in acute pancreatitis in mice. Mice were divided into 4 groups: saline control; acute pancreatitis induced with repeated injections of cerulein; control plus p38 MAPK inhibitor SB203580; and acute pancreatitis plus SB203580. The pancreatic histology, pancreatic enzymes, cytokines, myeloperoxidase activity, p38 MAPK and heat shock protein (HSP) 60 and 70 were evaluated. Repeated injections of cerulein resulted in acute pancreatitis in mice, accompanying with the activation of p38 MAPK and overexpression of HSP60 and HSP70 in the pancreatic tissues. Treatment with SB203580 significantly inhibited the activation of p38 MAPK, and furthermore, inhibited the expression of HSP60 and HSP70 in the pancreas, the inflammatory cytokines in the serum, and myeloperoxidase activity in the lung. The p38 MAPK signaling pathway is involved in the regulation of inflammatory response and the expression of HSP60 and HSP70 in acute pancreatitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call