Abstract

Electrical stimulation with a weak current has been demonstrated to modulate various cellular and physiological responses, including the differentiation of mesenchymal stem cells and acute or chronic physical pain. Thus, a variety of investigations regarding the physiological role of nano- or microlevel currents at the cellular level are actively proceeding in the field of alternative medicine. In this study, we focused on the anti-inflammatory activity of aluminum-copper patches (ACPs) under macrophage-mediated inflammatory conditions. ACPs generated nanolevel currents ranging from 30 to 55 nA in solution conditions. Interestingly, the nanocurrent-generating aluminum-copper patches (NGACPs) were able to suppress both lipopolysaccharide-(LPS-) and pam3CSK-induced inflammatory responses such as NO and PGE2 production in both RAW264.7 cells and peritoneal macrophages at the transcriptional level. Through immunoblotting and immunoprecipitation analyses, we found that p38/AP-1 could be the major inhibitory pathway in the NGACP-mediated anti-inflammatory response. Indeed, inhibition of p38 by SB203580 showed similar inhibitory activity of the production of TNF-α and PGE2 and the expression of TNF-α and COX-2 mRNA. These results suggest that ACP-induced nanocurrents alter signal transduction pathways that are involved in the inflammatory response and could therefore be utilized in the treatment of various inflammatory diseases such as arthritis and colitis.

Highlights

  • IntroductionInflammation is a basic signal that prompts the body to clear infecting or invading pathogens from our tissues

  • Inflammation is a basic signal that prompts the body to clear infecting or invading pathogens from our tissues. This response is naturally present at birth; it is classified as an innate immune response [1, 2]

  • Enzyme immunoassay (EIA) kits and enzyme-linked immunosorbent assay (ELISA) kits for determining PGE2 and tumor necrosis factor (TNF)-α levels were purchased from Amersham (Little Chalfont, Buckinghamshire, UK)

Read more

Summary

Introduction

Inflammation is a basic signal that prompts the body to clear infecting or invading pathogens from our tissues. This response is naturally present at birth; it is classified as an innate immune response [1, 2]. Phagocytes such as macrophages and dendritic cells are the principal cells that manage the inflammatory response. Despite the positive role of inflammation, hyperactive and long-lasting inflammatory states are critically linked to the onset of various serious diseases, including cancer, diabetes, atherosclerosis, and arthritis [3,4,5,6]. Returning upregulated chronic inflammatory responses to baseline levels could be an important strategy to prevent multiple diseases

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call