Abstract
Tau is a microtubule-associated protein, coded by the MAPT gene, which regulates microtubule (MT) polymerization and dynamics. Due to its key role in neurons, it is a major player in neurodegenerative diseases known as “tauopathies“. Since tau has emerged as a multitasking protein with a role in genome stability, it may act both in neurodegeneration and cancer. After demonstrating that tau can be considered as a risk factor for cancer, here we explored the mechanisms linking mutated tau to dysregulation of cancer-relevant processes, by employing lymphoblastoid cell lines (LCL) from patients affected by genetic tauopathy carrying the MAPT P301L mutation and healthy controls (wild-type, wt). In mutated LCL, we found reduced sensitivity to MT perturbation, along with decreased G2/M accumulation and cyclin B1 levels. Furthermore, mutated LCL displayed lower levels of phospho-Chk1 and phospho-Chk2 following hydrogen peroxide-induced oxidative stress, indicating a poorly effective DNA damage checkpoint, as well as reduced basal levels of p53. Such cells also exhibited lower levels of Bax and cleaved caspase-3, and increased levels of Cdc25A, upon oxidative stress, accounting for diminished apoptosis.Overall, these findings point to tau as a key player in biological pathways relevant for cancer, as evidenced by the differential response of mutated and wt cells to MT and DNA perturbation. The modulation of p53 is intriguing given its function as guardian of the genome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.