Abstract

In this study, a brain–computer interface (BCI) system known as P300 speller is used to spell the word or character without any muscle activity. For P300 signal classification, feature extraction is an important step. In this work, deep feature learning techniques based on sparse autoencoder (SAE) and stacked sparse autoencoder (SSAE) are proposed for feature extraction. Deep feature provides the abstract information about the signal. This work proposes fusion of deep features with the temporal features, which provides abstract and temporal information about the EEG signal. These deep feature and temporal feature are partially complement of each other to represent the EEG signal. For classification of the EEG signal, an ensemble of support vector machines (ESVM) is adopted as it helps to reduce the classifiers variability. In classifier ensemble system, the score of individual classifier is not at the same level. To transform these scores into a common level, min–max normalization is proposed prior to combining them. Min-max normalization scales the classifiers’ score between 0 and 1. The experiments are conducted on three standard public datasets, dataset IIb of BCI Competition II, dataset II of the BCI Competition III and BNCI Horizon dataset. The experimental results show that the proposed method yields better or comparable performance compared to earlier reported techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.