Abstract

The aim of the study was to investigate to what extent cortical hyper-reactivity to visual stimuli is present in upper limb amputees. Five amputees with phantom limb pain (PLP), five amputees without PLP (Non-PLP) and 10 healthy controls (HC) were investigated using a visual oddball paradigm. Two hundred visual stimuli were presented with target stimuli occurring at a probability of 25% and standard stimuli at a probability of 75%. Event-related potentials were recorded from nine scalp positions (F3, F4, Fz, C3, C4, Cz, P3, P4, Pz). The PLP-patients had significantly higher P300-amplitudes to both types of stimuli compared to the non-PLP-patients. The HC were not significantly different from both amputee groups. P300-amplitude to targets at frontal sites in the hemisphere contralateral to the amputation was higher in the PLP patients. P300-latencies to target stimuli differed only at frontal sites with PLP-patients showing significantly longer latencies than non-PLP-patients. To standard stimuli, however, they showed significantly shorter latencies at central and parietal scalp positions. The HC had significantly shorter latencies than both amputee groups. The size of the P300-amplitude was positively correlated with the intensity of PLP. These findings suggest a higher magnitude of non-specific cortical excitability in amputees with PLP and a reduced excitability in amputees without PLP. This extends previous findings of differences in cortical excitability in PLP and non-PLP patients in the sensorimotor domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call