Abstract

Mechanical loading is an important factor regulating cartilage metabolism maintained by chondrocytes. However, some of its underlying mechanisms remain poorly understood. In this study, we employed a chondrogenic cell line ATDC5 to investigate roles of P2Y(2) and GRK2 in chondrocyte mechanotransduction. We first confirmed the expression of chondrocyte markers in differentiated ATDC5 cells. We then exposed both differentiated and undifferentiated ATDC5 cells to oscillatory fluid flow, and found that differentiated ATDC5 cells responded to oscillatory fluid flow by increasing COX-2 and aggrecan expressions. More importantly, fluid flow induced ERK1/2 response in differentiated cells was increased more than 10 times compared to those in undifferentiated cells. Furthermore, we found that P2Y(2) mRNA and protein levels in differentiated ATDC5 cells were significantly higher than those in undifferentiated cells. In contrast, GRK2 protein levels in differentiated cells were significantly lower than those in undifferentiated cells. Finally, overexpressions of P2Y(2) and GRK2 in differentiated ATDC5 cells result in a 34% increase and a 21% decrease of the ERK1/2 phosphorylation, respectively, in response to oscillatory fluid flow, suggesting important roles of P2Y(2) and GRK2 in chondrocyte mechanotransduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.