Abstract

Rheumatoid arthritis is a common chronic inflammatory joint disease. Fibroblast-like synoviocytes-mediated inflammation is closely associated with the development of rheumatoid arthritis. In this study, we report that P2Y11 receptor activity is required for cytokine-induced inflammation in primary fibroblast-like synoviocytes (FLS). P2Y11R is fairly expressed in primary FLS isolated from healthy subjects and is elevated to around three- to four-fold in rheumatoid arthritis-derived FLS. The expression of P2Y11R is inducible upon IL-1β treatment. Blockage of P2Y11R by its antagonist suppresses IL-1β-induced TNF-α and IL-6 induction and ameliorates oxidative stress as determined by levels of cellular ROS and the oxidative byproduct 4-HNE. Moreover, blockage of P2Y11R by NF340 inhibits IL-1β-induced matrix metalloproteinase protein expression as indicated by the levels of MMP-1, MMP-3, and MMP-13. Mechanistically, blockage of P2Y11R mitigates IL-1β-activated NFκB signaling, which was revealed by reduced IκBα phosphorylation, nuclear p65 accumulation, and NFκB promoter activity. Our study provides evidence of a protective mechanism of P2Y11R antagonist NF340 against cytokine-induced inflammation. Therefore, targeting P2Y11R could have potential therapeutic implication in the treatment of RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call