Abstract

There is increasing evidence that adenosine 5'-triphosphate or a related purine plays a crucial role in smooth muscle relaxation and enteric synaptic neurotransmission. Accordingly, the aim of the present work is to investigate the role P2Y(1) receptors in purinergic inhibitory neurotransmission (pig ileum) and enteric neuronal activation in the small intestine (guinea-pig ileum). Using contractility measurements, micro-electrode recordings and Ca(2+) imaging we found that (i) adenosine 5'-Omicron-2-thiodiphosphate (ADPbetaS) (10 micromol L(-1)) caused smooth muscle relaxation and hyperpolarization that was antagonized by MRS2179 (10 micromol L(-1)) a P2Y(1) receptor antagonist and apamin (1 micromol L(-1)); (ii) electrical field stimulation (EFS) caused a non-nitrergic inhibitory junction potential (IJP) and relaxation that was antagonized by MRS2179 (10 micromol L(-1)); (iii) P2Y(1) receptors were immunolocalized in smooth muscle cells and enteric neurons; (i.v.) superfusion of ADPbetaS (1 micromol L(-1)) induced Ca(2+) transients in myenteric neurons that were inhibited by MRS2179 (1 micromol L(-1)), but not by tetrodotoxin (1 micromol L(-1)); and (v) EFS induced calcium transients were partially inhibited by MRS2179 (1 micromol L(-1)). We conclude that in the small intestine purinergic neuromuscular transmission responsible for the IJP and non-nitrergic relaxation is mediated by P2Y(1) receptors located in smooth muscle cells. Functional P2Y(1) receptors are also present in guinea-pig myenteric neurons. Therefore, P2Y(1) receptors might be an important pharmacological target to modulate gastrointestinal functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.